Global Treatment Services Pvt. Ltd.

Global Treatment Services

Single Port Endoscopic technique of Carpal Tunnel Release (ECTR):

Single Port Endoscopic technique of Carpal Tunnel Release (ECTR)

Carpal Tunnel Syndrome is a medical condition where in people suffer from numbness, pain and discomfort in the hand accompanied by tingling, burning, numbness, weakness of hand grip or simply pain. It is caused by the gradual strangulation of the Median nerve by the surrounding structures coursing within the carpal tunnel of the wrist, leading to nerve entrapment symptoms. These are usually felt over the thumb, index and middle finger, though the pain may extend up to the shoulders.

One in every five people suffering from such symptoms can be expected to have CTS following a thorough clinical examination, imaging and electrophysiologic (Nerve Conduction) studies. If untreated, it may result in permanent nerve damage causing constant numbness, wasting of the muscles of the hand involved in thumb movements.

This condition may affect both hands, though symptoms may predominate on one side. In early stages, the symptoms are intermittent in nature and usually occur at night times, the possible explanation being the flexed position of the wrist joint during sleep. However, the numbness can be intense enough to wake one from sleep.

Non surgical treatment includes the use of night splints, steroid injection, oral anti-inflammatory and analgesic drugs. However, for acute cases, surgery is the only option. Done under local anesthesia, the procedure itself doesn’t last more than half an hour, though an added mild sedation of the patient does help in making it quicker.

With the aid of an optically linked video monitor and Smart Release device in this single port endoscopic technique of carpal tunnel release, the surgeon precisely cuts the transverse carpal ligament from underneath using a retractable blade, without cutting open the entire palmar skin. Once done the blade retracts and the endoscopic instrument is withdrawn. The less than 1 cm skin incision is closed with absorbable sutures.

The resultant cosmetically acceptable scar is small and concealed within the wrist skin crease. Patients have the advantage of returning to work after surgery within eight days or earlier.

Article by.

Apollo Speciality Hospitals, Teynampet, Chennai. Dr (Major) GB Rajan, Consultant Plastic Surgeon, Apollo Speciality Hospitals, Teynampet, Chennai.

Automated Implantable Cardioverter- defibrillator: Treatments

Procedure Details

An automated implantable cardioverter-defibrillator (AICD) is a tiny electronic device implanted in the chest to prevent sudden death from cardiac arrest caused due to fast heart rhythms (tachycardias).

The AICD is capable of monitoring the heart rhythm to identify abnormal heart rhythms and determines the appropriate therapy to return your heartbeat to a normal heart rhythm.

The patient is admitted for 1 to 2 days for the AICD implantation. The implant procedure usually lasts about one hour and is performed in the Invasive Cardiac Laboratory. As it is very important to keep the area of insertion sterile to prevent infection, sterile drapes will be used to cover the patient from neck to feet. A small plastic cannula will be inserted in one of the veins on the hand to facilitate injection of medication. Just before implantation, the patient will be given an injection of an antibiotic to prevent wound infections. He/she will also receive medication through the intravenous cannula. After injection of a numbing medication, a small incision (cut) is made in the upper left chest (if you are right-handed) and a small pocket is created under the skin to accommodate the pulse generator. The lead is then inserted through a vein in the upper chest and is positioned under X-ray guidance until its tip lies snugly within the heart. The other end of the lead is then connected to the pulse generator. Your doctor may have to test the AICD by inducing an abnormal heart rhythm in the laboratory and observing if the AICD functions as expected. The patient will be put to sleep with medication before the test. The incision wound is then stitched up, cleaned and a waterproof dressing applied to the wound.

Most patients can be discharged one to two days after the implantation.

Article By

Manipal Hospitals

Shoulder Fraction Reduction: Treatments

What is Shoulder Fracture Reduction?

The term reduction indicates restoration of a fracture or dislocation of the bone back to its normal anatomic location.

Who is a candidate for Shoulder Fracture Reduction & Fixation?

Following patients are usually candidates for shoulder fracture reduction surgery:
Patients with comminuted fractures.
Proximal humeral dislocated fractures.
Fractures with displacement.
Glenoid (shoulder socket) involvement.

How is the procedure performed?

During open reduction and internal fixation, under the effect of anesthesia, the broken bones are put back into their normal anatomical position. Fixation is done internally using pins, screws, or bands. The incisions are then closed with stitches and sterile dressing is placed.
Closed reduction procedure placing fragments of bone back into their normal anatomic position and then external fixation with sling is used to keep them in place which is removed later on.

How long does the hospital stay last?

Most of the patients need to stay in hospital for about 2 to 3 days depending on surgeon’s discretion.

What would be done for pain relief?

Pain medications are administered per the patient requirements. Oral pain medications are continued in the recovery period as long as the patient continues to need them.

What should be expected in the postoperative period/rehab?

Pain management is designed per the patient’s requirement.
Necessary precautions and medications would need to be taken.
Immobilization of arm would be done with sling.
Wound care and bandaging would be advised.
Bathing advice would be given by the surgical team.
Balanced diet with iron supplements to promote healing would be advised.
Intake of plenty of fluids to maintain hydration.
Physical therapy is very crucial for successful recovery of the patient. Under the guidance of physical therapist, the patient is instructed exercise to help with strengthening and mobility. Also exercise helps reduce swelling and stiffness of the joint.

What are the advantages of procedure?

Fracture reduction results in placing bones back to their normal anatomical position which is very important in order for the joint to function properly without pain.

What is the outcome of Shoulder Fracture Reduction & Fixation?

With advancement of surgical techniques, appropriate treatment that is rendered yields excellent results for most of the patients.

Why NOSH for Shoulder Fracture Reduction?

NOSH is a doctor owned hospital and consequently attracts the top talent available in the country. NOSH has the best Orthopedic doctors and surgeons for Shoulder Fracture Reduction in India. Equipped with the state-of the-art infrastructure and latest high-end technology, NOSH is the best Orthopedics hospital for Shoulder Fracture Reduction in Delhi, India.

Shoulder Replacement: Treatments

Total Shoulder Replacement :
If the shoulder joint is worn leading on to severe pain, an artificial joint can be implanted and this is called Total shoulder replacement. A satisfying function and good pain relief can be achieved after performing total shoulder replacement. If no complications occur, more than 95% of the time a shoulder replacement can last for more than 10-15 years.

The procedure is done for those suffering from advanced arthritis of the shoulder joint. Total shoulder replacements are also performed for fractures of the upper end of arm bone. In fractures, usually it is such a situation that the fixation is not possible as the fracture is complex.

TYPES OF TOTAL SHOULDER REPLACEMENT:

Total Shoulder Replacements are as follows:

Anatomic Total Shoulder Replacement
Reverse Polarity Total Shoulder Replacement
Resurfacing arthroplasty of the shoulder joint.

The choice of procedure depends on number of factors.

A severely destroyed humeral head and glenoid surface with well working rotator cuff muscles would require a Anatomic Total Shoulder Replacement.

If the rotator cuff muscles are not functioning and a person has got severely damaged shoulder joint, then Reverse polarity Total Shoulder Replacement will be the correct option. In reverse total shoulder replacement, the socket and metal ball are switched. That means a metal ball is attached to the shoulder blade bone and a plastic socket is attached to the upper arm bone. This gives a biomechanical advantage by changing the centre of the rotation of the shoulder joint and also tensions the arm muscle called deltoid. These factors allow using the deltoid muscle instead of the torn rotator cuff to lift the arm thus facilitating to regain the lost movement.

If the destruction of the humeral head is not severe and hence if adequate bone stock is available, then Resurfacing arthroplasty of the shoulder joint will be the option.

The above description gives a general outline. Shoulder replacement surgery is highly technical. Each case is individual. The situation will be carefully evaluated before making any decisions. The correct nature of procedure will be determined after physical examination and performing radiological investigations such as X ray and CT Scan.
Preoperative workup

You will be anaesthetized for the surgery. Hence you would have some blood tests and routine check up by an anesthetist for the surgery. The intensity of the pain in first 24 hours is high. Hence during the surgery you will also have an injection to block the nerve supply of the arm. This block helps to get the whole arm numb and you feel a very little pain after the surgery.

A physiotherapist will see you before the surgery and teach you on the exercises that you will have to carry on after the surgery.
Operation

The operation is performed in a position as if you are sitting in a beach chair. The Key surgical steps are as follows

Access into the shoulder joint is performed through an incision of about 10cm from the front of the upper end of arm.
The gap between the arm muscle called deltoid and chest muscle called pectoralis major is explored and kept apart to have deeper access.
Deeper to that is Rotator cuff muscle called subscapularis and lining of the shoulder joint called capsule. Both are divided and the shoulder joint will be accessed.
The humeral head and the glenoid are prepared and correct size implant is fixed in. Stability of the joint is restored to the satisfactory extent
The fixation of the implant can be achieved by bone cement or with implants that have facility for bone growth. This will be determined on the individual case basis depending on the condition of the bone and the disease pathology.
All the layers of the wound that are opened for the access are securely closed.

Postoperative Stage

An inpatient stay in the ward for 2-3 days may be essential to optimize pain and train for getting range of motion before discharge. An adequate pain relief will be provided, wound will be checked, and an X ray of the shoulder joint will be taken. A physiotherapist will teach the exercises that need to be carried on to get satisfactory function. When discharged, a plan of home exercise programme will be taught.
The Success Rates and the Outcomes

The success of the surgery is very high. It is in the order of 90-95%. Most of the patients are satisfied with pain relief and gain of mobility.
Complications

The complications after the surgery are minimal. Infection, Nerve injury, Dislocation and Fracture are the important complications to think about, but fortunately the incidence of these problems is low.
Rehabilitation Post surgery

A careful, well-planned rehabilitation program is critical to the success of a shoulder replacement. A sling will be given for comfort during the first four weeks. Most patients are able to perform simple activities such as eating, dressing and grooming within 2 weeks after surgery.

Here are some “do’s and don’ts” for when you return home:

Don’t use the arm to push yourself up in bed or from a chair because this requires forceful contraction of muscles.
Do follow the program of home exercises prescribed for you. You may need to do the exercises 4 to 5 times a day for a month or more.
Don’t lift anything heavier than a glass of water for the first 6 weeks after surgery.
Don’t participate in any repetitive heavy lifting after your shoulder replacement.
Do avoid placing your arm in any extreme position, such as straight out to the side or behind your body for the first 6 weeks after surgery.

Many thousands of patients have experienced an improved quality of life after shoulder joint replacement surgery. They experience less pain, improved motion and strength, and better function.
Article by
Sparsh Hospitals, Bangalore.

Pediatrics Deformities of Lower Limbs: Treatments

Deformities of Lower Limbs

Deformity is an alternation in shape of limbs.
Causes of deformity can be broadly grouped as:

a) Congenital deformities

b) Acquired deformities
Congenital deformities:

The exact cause is still not established. There are several factors causing these deformities such as genetic factors operating on the developing fetus during intra uterine development. Teratogenous influence of drugs and chemicals can also cause congenital deformities.
Congenital deformities of upper limbs:

a) Shoulder – Sprengel’s shoulder.

b) Elbow – congenital superior radio ulnar synostesis.

c) Wrist – Madelung’s deformity.

d) Hand – syndactylism, poly dactylism
Congenital deformities of lower limbs:

a) Congenital talipus equino varus (club foot)

b) Congenital dislocation of hip

c) Congenital genu recurvatum, genu varus (bow knees)

d) Congenital pseudoarthrosis of tibia (bow legs)
Acquired deformities:

The most common causes of acquired deformities are;

a) Trauma

b) Infection

c) Degeneration

d) Tumor

e) Metabolic disorder
Trauma:

Injuries to bones, nerves, vascular and soft tissues cause deformities such as malunited fractures, claw hand, burns contractures etc.
Infections:

Infections of bone and joints are one of the most common causes of deformities. Tuberculosis and septic infections cause the largest number of deformities. Infected non-union of long bones is indeed a big challenge.
Degeneration:

Degeneration of the joints plays a major role in deformities and most commonly occurs in the knee joints. (Osteoarthritis)
Metabolic and other systemic disorders:

Metabolic and hormonal disorders may cause skeletal deformities. For example:- rickets, vitamin D deficiency, hyper parathyroidism, senile osteoporosis and Paget’s disease.
Management:
Conservative Methods :

Conservative methods must always be tried first. These include methods such as-

Physiotherapy: Passive stretching corrects many deformities of mild degree.
Splints and casts: this is the commonest method used to correct deformities in children.
Traction: may be used for deformities caused by muscle spasm.
Manipulation of joints under anesthesia can be done to release adhesions.

Surgical methods:

When conservative methods fall and deformity causes disability, surgical methods are used. Surgical procedures include-

Soft tissue procedures
Bony procedures

Soft tissue procedures:

These are always tried first to correct deformities.

Postero medial soft tissue release in club foot.
Tendoachilles lengthening and posterior capsulotomy in equinous foot.

Bony procedures:

In severe deformities bony procedures are done along with soft tissue surgeries.

Osteotomy is done to correct deformity of bones.
Arthrodesis is done to correct deformity of joints.

Let us now take a close look at one pioneering technique – limb deformity and limb length discrepancy correction by the Ilizarov technique. The advantages of this method are that the patient remains on weight bearing throughout treatment and can move the joints in the vicinity of the apparatus.

In associated infections or with osteoporotic bone no other method can be used and the Ilizarov method is the only treatment of choice.

Professor Garvill Abhramovich Ilizarov invented and developed this extremely versatile circular ring fixator in the remote Russian city of Kurgan in Western Siberia in the early 50s. For 15 years he worked in obscurity in a tiny two storey modern hospital treating patients with his revolutionary but unrecognized technique. In 1965, The Ministry of Health from Moscow observed Dr Iliazarov’s work on the circular fixator as they were applied to patients in various clinical situations in orthopaedics and also duly recognized his immense contribution. From 1965 to 1983 more than 25,000 patients were treated at the established All Pan Union Ilizarov Scientific Center for Restorative Orthopaedics and Traumatology in Kurgan, Siberia, U.S.S.R.

From 1984, surgeons from various parts of then world have trained in the Ilizarov Technique and popularized the concepts of Prof. G.A. Iliazarov throughout the world. Apollo Hospitals Chennai was the pioneer in India for this technique.
Ilizarov ring fixing method:

This consists of 3 phases.
Operative phase:

“K” wires are passed through bones proximal and distal to the deformity. These ‘K’ wires are fixed to the Ilizarov rings by wire fixation bolts – one ring proximally and one ring to the deformity. Both the rings are connected by hinges and threaded rods.
Distraction phase:

Distraction for correction of deformity is usually started on the 10th day and continues at the rate of about 3 mm daily till the deformity is corrected. Duration of correction depends on the amount of deformity to be corrected and limb length discrepancy. Once the deformity is fully corrected, the apparatus is locked.
Consolidation phase:

This phase extends from the locking phase to the completion of solid bone formation. It takes about 2-3 months. Once the bone is solid, the Ilizarov ring fixations are removed. The patient is mobilized initially for partial weight bearing and later to full weight bearing with support.

Article written by :

Dr. R. Gopalakrishnan

Chief Orthopedic Surgeon

Apollo Hospitals, Chennai.

Procedure details of Stapedectomy

Procedure Details

A stapedectomy is a surgical procedure of the middle ear performed to improve hearing.

If the stapes footplate is fixed in position, rather than being normally mobile, then a conductive hearing loss results. There are two major causes of stapes fixation. The first is a disease process of abnormal mineralization of the temporal bone called otosclerosis. The second is a congenitalmalformation of the stapes.

In both of these situations, it is possible to improve hearing by removing the stapes bone and replacing it with a micro prosthesis – a stapedectomy, or creating a small hole in the fixed stapes footplace and inserting a tiny, piston-like prosthesis – a stapedotomy. The results of this surgery are generally most reliable in patients whose stapes has lost mobility because of otosclerosis. Nine out of ten patients who undergo the procedure will come out with significantly improved hearing while less than 1% will experience worsened hearing ability or deafness. Successful surgery usually provides an increase in hearing ability of about 20 dB. That is as much difference as having your hands over both ears, or not. However, most of the published results of success fall within the speech frequency of 500 Hz, 1000 Hz and 2000 Hz; poorer results are typically obtained in the high frequencies, but these are normally less hampered by otosclerosis in the first place.

Article by

KIMS Kerala

Treatment for Speech Disorders

Speech & Language Therapy is treatment of problems in communication. Therapy is given for problems like child not speaking at an early age, repeating certain word, not speaking clearly, and not speaking certain letters, voice disorders and problem in communication after an accident and so on.
MICROCARE provides one stop solution to all speech problems. Our lab with state of art equipment and a professional team of Speech pathologist, Audiologist, Voice Therapist and headed by Specialist ENT Microsurgeon Dr. Sriprakash Vinnakota MS ENT will look after your communicating difficulties. MICROCARE provides rehabilitation for the following speech problems.

Delayed Speech & Language
Misarticulation
Stammering
Aphasia
Cleft Palate
Mental Retardation
Cerebral palsy
Hearing loss
Voice Disorders

Individual speech, language, and literacy therapy sessions are scheduled for patients of all ages.

Different Types of Rehabilitation Methods

Different Types of Rehabilitation Methods:
Neurological Rehabilitation: Stroke,Head Injury,Spinal Cord Injury,Guillain Barre Syndrome,Myelopathy,Myopathies,Parkinson’s Disease,Motor Neuron Disease,Movement Disorders,Balance & Coordination Disorders,Cognitive Disorders,etc.
Musculoskeletal Rehabilitation: Neck & Back pain spondylosis,disc prolapse,etc.Frozen Shoulder ,knee pain Osteoarthritis,Bursitis,ligament injuries.Sports injuries like AnkleSprain,Rotator cuff tears,Impingement syndrome,Rehabilitation following AGL repair,hip/knee replacement, Osteoporosis,Deconditioning due to chronic Illness,Rheumatological disorders,Mobilization following surgery,fractures,polytrauma.
Pediatric Rehabilitation: This inter-disciplinary programme is for infants and childern.Services are provided in the treatment of physical disabilities,developmental delay,congenital deformities,n euro-sensory impairments,orthopedic injuries and communication disorders.Our pediatric therapists have special training in the areas of development hand function,Neuro-Development Treatment (NDT),handwriting,proprioceptive neuromuscular facilitation,sensory integration .Services are available for conditions like:Cerebral Palsy,Development Disorders,Autism,pre-maturity,Attention Deficit Disorder, Brain Injury,Specific Learning Disorders,Visual Perceptual Difficulties,Down’s syndrome,Feeding Problems,Hearing Impairments,Speech Delay,Multiple Disabilities,etc.
Geriatic Rehabilitation: A Balance and coordination issues,Fall risk assessment,Fall Prevention Programme .This programme will help improve balance,endurance,muscle strength and coordination so that they can perform day-to-day tasks comfortably thereby improving quality of life.
Cardio Pulmonary Rehabilitation: This aims to prevent and minimize impairments secondary to cardiac or pulmonary illnesses and improve fitness & the quality of life of patient.Individualized rehab programme which cover exercise schedule,education and lifestyle modification are designed based on the needs and abilities of patients.Services are available for condition like:Post Myocardial infarction,Post CABG,Stable angina,Valvular heart diseases,At risk cardiac patients,Obstructive/restrictive airway disease,etc.
Chronic Pain Management: Our holistic rehab approach including counseling,interventional pain procedures and therapeutic modalities helps the patients to overcome chronic pain syndromes like Fibromyalgia,Myofascial pain syndrome,Repetitive strain injuries,Failed Back syndrome,plantar fasciitis,Tendo-Achillits,Retrocalcaneal bursitis(Heel pain),etc.
Cancer Rehabilitation: Lymphedema management,Endurance training,Pain management etc.
Women’s Health Issues: Ante natal and post natal exercise programmes,Pelvic Pain Management,Urinary Incontinence,Pre or Post natal Postural/Musculoskeletal pain.
Vestibular/Balance Disorders Evaluation and Treatment: Vestibular Rehabilitation serves patients with dizziness and other related balance problems.It consists of a comprehensive evaluation and a stage by stage progressive treatment plan to alleviate the symptoms,identity possible triggers and minimize recurrence.
Amptuee Rehabilitation: Pre amputation assessment and counselling,prescription and checkout of prosthesis and prosthesis related musculoskeletal problems.
Fitness Programme Prescription: For those planning to join Gym.
Ergonomics /Onsite Workstations Evaluations: Ergonomics Awareness and Training to prevent Repetitive Strain Injury(RSI) and other Work Related Musculoskeletal Disorders(WRMSDs).

Hand Microsurgery: Treatments

Hand Microsurgery

Surgery of the hand is a new speciality in our country. For the first time in the private sector, The Apollo Hospitals Group has developed a 24 hour state-of-the-art facility for comprehensive care of hand injuries at The National Institute in Hand Surgery, Microsurgery and Plastic Surgery, established at the Apollo First Med Hospital in Chennai. Apollo Hospitals, is one of the very few dedicated centers for treating hand injuries in the country.

Micro surgery is a sub-speciality performed with the aid of a microscope on structures that are barely visible to the naked eye. This sub-speciality mainly deals with ‘Replantations’ (reattaching severed parts of the limb). The department consists of senior consultants who have trained and worked at leading medical institutions in India and abroad.

Notable features of this department include:

A dedicated operating theatre, exclusively for hand and general trauma.
Fully trained staff round the clock
Senior consultants available on call
Latest series of equipment
Continuity in management on individual basis

Apollo Hospitals offers surgical treatment for hand injuries and problems such as:
Congenital Abnormalities

The most common hand problems in infants are syndactyly (webbed fingers) and polydactyly (extra fingers). In all hand surgeries and especially pediatric hand surgeries at Apollo Hospitals, India atraumatic techniques (causing no tissue damage) are used.
Carpal Tunnel Syndrome

Carpal Tunnel Syndrome occurs most commonly due to the compression of the median nerve at the wrist where it passes through a narrow area called the carpal tunnel. The symptoms include numbness in the thumb, index, and middle fingers especially at night or upon waking up in the morning.

Carpal Tunnel Syndrome can be treated by releasing the constriction through endoscopic or minimal access surgery.
Arthritis

Reconstruction of painful arthritic deformities is performed routinely and includes tendon transfers, muscle release and joint displacement fusion.
Reconstructive Surgery (for tumors, nerve compression and arthritis)

Reconstructive hand surgery alleviates pain and helps correct deformities caused by tumors, nerve compression and arthritis. Many benign tumors of the hand and wrist don’t always cause pain and subside soon. However, when pain persists or limits necessary function, removal is recommended and is almost universally curative.
Microsurgery (for finger deformities)

Replantation of a single finger or multiple fingers can be done through microsurgery. Even if multiple finger amputation has been done, one or more fingers can be replanted in a position that will allow functioning of the hand. Replantation surgery will be followed by rehabilitative therapy for the hand.

Article By
Apollo Hospitals

CSF Rhinorrhea Treatment & Management

Surgical Therapy

Several surgical options for repair of CSF leaks arising from the anterior skull base exist. There has been a paradigm shift over the last 30 years while choosing the best approach given the advancements made in endoscopic techniques.
Intracranial repair

Intracranial repair was frequently used (and is still used in select cases) for the routine repair of anterior cranial fossa CSF leaks. These leaks were typically approached via a frontal craniotomy. In rare situations, a middle fossa or posterior fossa craniotomy was required. Different repair techniques have been used, including the use of free or pedicled periosteal or dural flaps, muscle plugs, mobilized portions of the falx cerebri, fascia grafts, and flaps in conjunction with fibrin glue. Leaks arising from the sphenoid sinus are difficult to reach by means of an intracranial approach.

Advantages of the intracranial approach include the ability to inspect the adjacent cerebral cortex, directly visualize the dural defect and seal a leak in the presence of increased ICP with a larger graft. When preoperative localization attempts fail to reveal the site of a leak, intracranial approach with blind repair has been successful. In these situations, the cribriform and the sphenoid area, if necessary, are covered with the repair material.

Disadvantages of the intracranial approach include increased morbidity, increased risk of permanent anosmia, and trauma related to brain retraction, including hematoma, cognitive dysfunction, seizures, edema, and hemorrhage. In addition, the postoperative hospital stay is longer, adding to the overall cost of the procedure. Failure rates for this approach are 40% for the first attempt and 10% overall.
External approaches

Defects in the posterior table of the frontal sinus may be approached externally via a coronal incision and osteoplastic flap. The osteoplastic flap provides the surgeon with a view of the entire posterior table of the frontal sinus and is especially useful for defects more than 2 cm above the floor and lateral to the lamina papyracea. In select cases, these defects may also be approached with a simpler eyebrow incision and an extended trephination of the frontal sinus in combination with an extended endoscopic frontal sinusotomy. Care must be taken to avoid unnecessary trauma to the surrounding mucosa and the frontal recess entirely.

External approaches to the skull base can also be obtained through various incisions or through nasal approaches for access to the ethmoid sinuses and sphenoid sinus. These include external ethmoidectomy, transethmoidal sphenoidotomy, transseptal sphenoidotomy, and the transantral approach to the skull base. These procedures are infrequently chosen in current practice, given the high success rates and low morbidity associated with the endoscopic approach. However, they should be part of every skull base surgeon’s armamentarium.

External ethmoidectomy

An external ethmoidectomy begins with a tarsorrhaphy on the ipsilateral eye in order to prevent corneal injury. The incision is made halfway between the medial canthus and the midline of the nose down to bone. Lateral elevation of the periosteum exposes the anterior lacrimal ridge and the lacrimal fossa. The lacrimal sac is elevated and retracted out of the fossa.

As the periosteum is elevated posteriorly along the lamina papyracea, the anterior ethmoidal artery will be encountered 2-2.5 cm posterior to the lacrimal crest. This artery needs to be ligated to increase exposure. The frontoethmoid suture line marks the level of the fovea ethmoidalis, thus dissection should never be superior to this line. The posterior ethmoidal artery is found approximately 1.2 cm posterior to the anterior ethmoidal artery in the frontoethmoid suture line. The optic nerve lies 5 mm posterior to the posterior ethmoidal artery.

The ethmoidal cells are then entered in the area of the lacrimal fossa, and the anterior two thirds of the lamina are removed. A complete dissection of the ethmoid labyrinth is performed. The skull base is then identified in the posterior ethmoids, and the anterior wall of the sphenoid is exposed.

Transethmoidal sphenoidotomy

To perform a transethmoidal sphenoidotomy, an external ethmoidectomy is carried out first as described above. The sphenoid sinus ostium is identified and opened first with a small curette or a beaded probe. A Kerrison punch can then be used to enlarge the opening. The anterior wall of the sphenoid is removed in a meticulous fashion to gain access to the sellar region.

Transseptal sphenoidotomy

The transseptal approach to the sphenoid can be carried out using a sublabial or transnasal incision. An external rhinoplasty incision is preferred by the authors.

The sublabial approach requires the use of a gingivobuccal sulcus incision to expose the pyriform aperture and free the nasal spine. The caudal septal cartilage is then identified, and a left (or right) septal mucoperichondrial flap is elevated. This mucoperichondrial flap is elevated laterally and inferiorly along the nasal floor in the subperiosteal plane. The cartilaginous septum is dislocated from the maxillary crest, and the contralateral nasal floor mucoperiosteal flap is elevated. The contralateral nasal septum is, therefore, not elevated off the cartilage. Once the bony-cartilaginous junction is reached, it is disarticulated and the contralateral posterior flap is elevated. The bony septum is removed to expose the sphenoid rostrum, which is widely removed via osteotomies or a drill to expose the entire sphenoid sinus.

Transantral approach

A transantral approach to the skull base offers wider access to the anterior sphenoid, ethmoids, pterygopalatine fossa, and maxilla. An open anterior maxillary sinus antrostomy is known as the Caldwell-Luc procedure. A gingivobuccal sulcus incision is made, and the anterior wall of the maxilla is exposed. The periosteum is elevated superiorly as far as the infraorbital nerve, exercising extreme care to avoid injuring the nerve as it exits via the infraorbital foramen. A canine fossa osteotomy is performed to enter the maxillary sinus. Kerrison rongeurs are then used to extend the opening into the maxillary sinus. The ethmoidal bone can then be approached medially and superiorly through the maxilloethmoidal angle. A more posterior route is taken to expose the sphenoid sinus. When needed, exposure of the pterygopalatine fossa is achieved by creating an opening into the posterior wall of the maxillary sinus.

Endoscopic approaches;

Compared with external techniques, endoscopic techniques have several advantages, including better field visualization with enhanced illumination and magnified as well as angled visualization. Another advantage is the ability to more accurately position the underlay or overlay grafts. Multiple studies demonstrate a 90-95% success rate with closure of skull base defects using the endoscopic approach.

General endoscopic concepts

As previously mentioned, the role of antibiotic prophylaxis has not been studied in a controlled fashion for iatrogenic and spontaneous CSF rhinorrhea. However, the authors believe that given the previously published rates of ascending meningitis in untreated CSF leaks, the administration of perioperative intravenous antibiotics is warranted.

Decongestion of the nasal cavity with topical 1:1000 epinephrine or 4% cocaine solution is recommended in order to maximize endoscopic visualization. Injection of 1% lidocaine with 1:100,000 epinephrine at the axilla of the middle turbinate and region of the sphenopalatine artery via a transoral or transnasal route causes vasoconstriction of the blood vessels and helps to minimize bleeding. The use of intravenous anesthesia with propofol and remifentanil has also been demonstrated to reduce intraoperative blood loss when compared with inhalational anesthesia. This is related to a decreased heart rate, which translates into decreased cardiac output, thus reducing the amount of peripheral circulatory volume.

Placement of a lumbar drain has not been demonstrated to decrease recurrence rates of CSF rhinorrhea after endoscopic repair. In theory, lumbar drain placement decreases the pressure exerted by the CSF at the site of the repair, thus allowing the tissues to heal. However, this theory has not been validated. In fact, a recent study found no difference in leak recurrence when patients who had a lumbar drain were compared to those who did not. This finding remained true when the patients were subdivided according to the etiology of the leak.

In general, lumbar drain placement remains institution and surgeon dependant. One must take into account that a lumbar drain can lead to headaches related to overzealous CSF drainage and limits patient mobility postoperatively. One of the benefits of lumbar drain placement is the ability to administer fluorescein to guide in the localization of the leak.

When a lumbar drain is used, fluorescein mixed with autologous CSF is injected slowly over several minutes. As previously discussed, fluorescein is not approved by the FDA for the diagnosis and treatment of CSF leaks. Precisely 0.1 mL of 10% fluorescein is mixed with 10 mL of CSF or bacteriostatic saline. The authors have found that injecting this mixture over 10 minutes has resulted in significantly fewer adverse events such as seizures when compared with early reports in the literature.

A study by Elmorsy and Khafagy of 31 patients with spontaneous CSF rhinorrhea indicated that skull base defects can be successfully closed endoscopically using a septal graft and a middle turbinate rotational flap. In a retrospective chart review, the investigators found that defect closure was obtained in 27 patients after one surgery, with closure achieved in two more after a second surgery, giving the procedure an overall success rate of 93.5%. Closure was unsuccessful in two of the 31 patients even after a third surgery, leading to referral for a shunt procedure.[14]

A study by Lemonnier et al indicated that endoscopic endonasal eustachian tube closure is an effective management technique for refractory CSF rhinorrhea occurring after lateral skull base surgery. The surgery was successful in seven out of nine patients in the study, although one of the seven patients required a revision procedure.[15]

Specific endoscopic approaches

Several different endoscopic approaches have been developed. Each is designed to gain access to the area of interest in the most efficient fashion. The transfrontal, transcribriform, transplanum, transsellar, transclival, and transpterygoid have all been well described.

Transfrontal approach

The transfrontal approach allows access to the floor and posterior wall of the frontal sinus. Leaks originating from this area can be successfully repaired using this approach in the majority of the cases. The frontal sinus outflow tract must be carefully preserved in order to prevent mucocele formation in the long term. The main advantage of the transfrontal approach is that it avoids obliteration of the frontal sinus with an osteoplastic flap. This approach, however, may not effectively manage defects originating in the most lateral or superior aspects of the frontal sinus, since these regions may exceed the limitations of current instrumentation when the technique is performed endoscopically.

The approach begins by performing a complete ethmoidectomy. This is followed identification and dissection of the frontal recess. This area is then widened via a modified endoscopic Lothrop or Draf III procedure, which provides a panoramic exposure of the posterior table of the frontal sinus.

Transcribriform approach

The transcribriform approach exposes the medial anterior cranial fossa from the medial aspect of the middle turbinate to the olfactory groove. Posteriorly, it extends to the anterior aspect of the planum sphenoidale. Removing the perpendicular plate of the ethmoid allows access to the crista galli. Extreme care must be used when dissecting near the area of the olfactory groove as damage to the olfactory fibers will cause anosmia.

Transfovea approach

Access to the lateral aspect of the anterior cranial fossa can be achieved by using the transfovea approach. The dissection extends from the middle turbinate laterally to the lamina papyracea. The frontal sinus marks the anterior limit, and the anterior wall of the sphenoid sinus defines the posterior limit. In some cases, the middle turbinate is removed and the transfovea and transcribriform approaches are combined.

Transplanum approach

The transplanum approach allows exposure of skull base defects along the planum sphenoidale and those with significant involvement of the suprasellar region. An anterior ethmoidectomy is performed first. This is followed by a posterior ethmoidectomy, which provides access to the most anterior aspect of the planum. The anterior wall of the sella is taken down to provide posterior exposure.

Transsellar approach[16]

The transsellar approach is the route of choice for defects on the sella turcica with minimal suprasellar extension. It begins with a complete ethmoidectomy followed by identification and opening of the sphenoid ostia. The opening is then generously enlarged to provide wide exposure to the sella. If bilateral access is needed, the posterior bony septum and the intersinus septum can be removed.

Transclival approach[17]

The first steps to perform a transclival approach include a bilateral complete ethmoidectomy and a wide sphenoidotomy. The intersinus septum and rostrum are taken down. The dissection extends from carotid to carotid bilaterally and exposes the floor of the sella, the optic canals, and the upper clivus. Drilling the posterior wall of the sphenoid sinus permits exposure of the upper one third of the clivus. The abducens nerves define the lateral limit of the dissection. If access to the lower two thirds of the clivus is required, the nasopharynx is exposed via a transnasal route. The basopharyngeal fascia and prevertebral muscles are incised. The clivus is drilled down until the dura is exposed. The eustachian tubes mark the vertical segments of the carotid arteries and define the lateral extension of the dissection.

Transpterygoid approach

The transpterygoid approach begins by performing an endoscopic modified medial maxillectomy. This permits a wide view of the lateral extent of the maxilla and the posterior wall of the maxillary sinus. The infraorbital nerve is then identified and its trajectory followed. A complete sphenoethmoidectomy is then performed. The crista ethmoidalis is isolated, and the main branch of the sphenopalatine artery is identified.

At this point, the surgeon should decide whether a vascularized nasal-septal flap is going to be used to close the defect. If so, every effort to preserve the sphenopalatine artery and its more proximal supply is made. If free mucosal grafts are going to be used, the artery may be cauterized. In either situation, the bone of the posterior wall of the maxillary sinus is removed so the sphenopalatine artery can be dissected proximally to identify the (internal) maxillary artery and its ascending and descending branches. The sphenopalatine artery is also an important landmark since the pterygopalatine ganglion is situated directly posterior to the artery. Care must be taken to preserve the ganglion and its parasympathetic fibers, which contribute to lacrimation.

After the infraorbital nerve, maxillary artery and parasympathetic fibers are identified, the fat within the pterygopalatine fossa may be dissected or cauterized with bipolar cautery until the anterior wall of the lateral recess of the sphenoid sinus is identified. This bone is removed with a drill, thus exposing the contents of the lateral recess of the sphenoid sinus. Typically, any defect in the middle fossa floor occurs in this vicinity, lateral to the Sternberg canal and the foramen rotundum.

Pages:1...77787980818283...92